How do you simplify the expression #sec^2x-1#?
1 Answer
Sep 16, 2016
Explanation:
Using the
#color(blue)"trigonometric identity"#
#color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)))# divide all terms on both sides by
#cos^2x#
#rArr(sin^2x)/(cos^2x)+(cos^2x)/(cos^2x)=1/(cos^2x)#
#color(orange)"Reminder"#
#color(red)(bar(ul(|color(white)(a/a)color(black)(tanx=(sinx)/(cosx)" and " secx=1/(cosx))color(white)(a/a)|)))#
#rArrtan^2x+1=sec^2x# subtract 1 from both sides.
#tan^2xcancel(+1)cancel(-1)=sec^2x-1#
#rArrsec^2x-1=tan^2x#