How do you simplify the expression #secthetatanthetacsctheta#?

2 Answers
Aug 9, 2016

#=sec^2theta#

Explanation:

#secthetatanthetacsctheta#
#=1/costheta times sintheta/costheta times 1/sintheta#
#=1/costheta times cancelsintheta/costheta times 1/cancelsintheta#
#=1/cos^2theta#
#=sec^2theta#

Aug 9, 2016

#sec^2(theta)#

Explanation:

#sec(theta)->1/cos(theta)#

#tan(theta)->(sin(theta))/(cos(theta))#

#csc(theta)->1/(sin(theta))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Putting this all together gives:

#1/cos(theta)xx(cancel(sin(theta)))/cos(theta) xx1/(cancel(sin(theta))#

#=1/cos^2(theta) = sec^2(theta)#