We have: #(sin(theta) + tan(theta)) / (1 + sec(theta))#
Let's apply two standard trigonometric identities; #tan(theta) = (sin(theta)) / (cos(theta))# and #sec(theta) = (1) / (cos(theta))#:
#= (sin(theta) + (sin(theta)) / (cos(theta))) / (1 + (1) / (cos(theta)))#
#= ((sin(theta)cos(theta) + sin(theta)) / (cos(theta))) / ((cos(theta) + 1) / (cos(theta)))#
#= (sin(theta)cos(theta) + sin(theta)) / (cos(theta) + 1)#
Let's apply the Pythagorean identity #cos^(2)(theta) + sin^(2)(theta) = 1#:
#= (sin(theta) (cos(theta) + 1)) / (cos(theta) + cos^(2)(theta) + sin^(2)(theta))#
We can rearrange the Pythagorean identity to get:
#=> sin^(2)(theta) = 1 - cos^(2)(theta)#
Let's apply this to get:
#= (sin(theta) (cos(theta) + 1)) / (cos(theta) + cos^(2)(theta) + 1 - cos^(2)(theta))#
#= (sin(theta) (cos(theta) + 1)) / (cos(theta) + 1)#
#= sin(theta)#