How do you simplify the expression #sqrt(2/3)+sqrt6#?

1 Answer
Oct 11, 2017

Answer:

#4sqrt(2/3)#

Explanation:

I can rewrite the second term in the expression like so:

#sqrt(2/3)+sqrt(18/3)#

Then factor out a #2/3#:

#sqrt(2/3)+sqrt(9*2/3)#

Use properties of square roots:

#sqrt(2/3)+sqrt(9)*sqrt(2/3)#

Take the square root of #9#:

#1sqrt(2/3)+3sqrt(2/3)#

Add like radicals:

#4sqrt(2/3)#