How do you simplify the expression #tan^2x/(secx+1)#?

2 Answers
Sep 1, 2016

#tan^2 x=sec^2 x-1=(sec x+1)(sec x -1)#

#rArr tan^2 x/(sec x+1)=sec x-1, or, =(1-cos x)/cos x#,

Sep 1, 2016

#secx-1#

Explanation:

Use the #color(blue)"trigonometric identity"# for #tan^2x#

#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(tan^2x=sec^2x-1)color(white)(a/a)|)))#

#rArr(tan^2x)/(secx+1)=(sec^2x-1)/(secx+1)........ (A)#

Note that #sec^2x-1" is a difference of squares"# and in general, factorises as.

#color(red)(|bar(ul(color(white)(a/a)color(black)(a^2-b^2=(a-b)(a+b))color(white)(a/a)|)))#

#(secx)^2=sec^2x" and " (1)^2=1rArra=secx" and " b=1#

#rArrsec^2x-1=(secx-1)(secx+1)#

substitute into (A)

#rArr(sec^2x-1)/(secx+1)=((secx-1)cancel((secx+1)))/cancel(secx+1)#

#rArr(tan^2x)/(secx+1)=secx-1#