How do you simplify the expression #tan^2x/(secx+1)#?
2 Answers
Sep 1, 2016
Sep 1, 2016
Explanation:
Use the
#color(blue)"trigonometric identity"# for#tan^2x#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(tan^2x=sec^2x-1)color(white)(a/a)|)))#
#rArr(tan^2x)/(secx+1)=(sec^2x-1)/(secx+1)........ (A)# Note that
#sec^2x-1" is a difference of squares"# and in general, factorises as.
#color(red)(|bar(ul(color(white)(a/a)color(black)(a^2-b^2=(a-b)(a+b))color(white)(a/a)|)))#
#(secx)^2=sec^2x" and " (1)^2=1rArra=secx" and " b=1#
#rArrsec^2x-1=(secx-1)(secx+1)# substitute into (A)
#rArr(sec^2x-1)/(secx+1)=((secx-1)cancel((secx+1)))/cancel(secx+1)#
#rArr(tan^2x)/(secx+1)=secx-1#