How do you simplify the factorial expression #((n+2)!)/(n!)#?

1 Answer
Feb 8, 2017

# ((n+2)!)/(n!) = (n+2)(n+1)#

Explanation:

Remember that:

# n! =n(n-1)(n-2)...1 #

And so

# (n+2)! =(n+2)(n+1)(n)(n-1) ... 1#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \=(n+2)(n+1)n!#

So we can write:

# ((n+2)!)/(n!) = ((n+2)(n+1)n!)/(n!) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(n+2)(n+1)#