How do you simplify #(x sqrt 18) - (3 sqrt(8x^2))#?

1 Answer
Aug 2, 2018

Answer:

#" "#
#color(red)((x sqrt 18) - (3 sqrt(8x^2))=-3xsqrt(2)#

Explanation:

Given the radical expression:

#color(blue)((x sqrt 18) - (3 sqrt(8x^2))#

#rArr [x * sqrt(18)] - [3*sqrt(8)*sqrt(x^2)]#

#rArr [x * sqrt(9*2)] - [3*sqrt(4*2)*sqrt(x^2)]#

#rArr [x * sqrt(9)*sqrt(2)] - [3*sqrt(4)*sqrt(2)*sqrt(x^2)]#

#rArr [x * 3*sqrt(2)] - [3*2.sqrt(2)*x)]#

#rArr [x * 3*sqrt(2)] - [x*3*2*sqrt(2))]#

#rArr [3*x *sqrt(2)] - [6*x*sqrt(2))]#

#rArr 3x sqrt(2) - 6x sqrt(2)#

#rArr -3 x sqrt(2)#

Hence,

#color(red)((x sqrt 18) - (3 sqrt(8x^2))=(-3xsqrt(2))#