How do you solve #1/4(x-5)-1/5(2x+1)=1/2(3x-7)#?

1 Answer
Aug 8, 2016

#41/33 = x#

Explanation:

We could use the distributive law to get rid of the brackets, but it would be easier to get rid of the denominators altogether. Multiply each term by 20.

#color(red)(20xx)1/4(x-5)-color(red)(20xx)1/5(2x+1)=color(red)(20xx)1/2(3x-7)#

#cancel20^5xx1/cancel4(x-5)-cancel20^4xx1/cancel5(2x+1)=cancel20^10xx1/cancel2(3x-7)#

#5(x-5) -4(2x+1) = 10(3x-7)#

#5x-25 -8x-4 =30x-70#

#-25-4+70=30x-5x+8x#

#41=33x#

#41/33 = x#