How do you solve #-1+ \frac { 10} { 7} x > - 17#?

1 Answer
Jan 30, 2018

See a solution process below:

Explanation:

First, add #color(red)(1)# to each side of the inequality to isolate the #x# term while keeping the inequality balanced:

#-1 + color(red)(1) + 10/7x > -17 + color(red)(1)#

#0 + 10/7x > -16#

#10/7x > -16#

Now, multiply each side of the inequality by #color(red)(7)/color(blue)(10)# to solve for #x# while keeping the inequality balanced:

#color(red)(7)/color(blue)(10) xx 10/7x > color(red)(7)/color(blue)(10) xx -16#

#cancel(color(red)(7))/cancel(color(blue)(10)) xx color(blue)(cancel(color(black)(10)))/color(red)(cancel(color(black)(7)))x > color(red)(7)/(cancel(color(blue)(10))5) xx color(blue)(cancel(color(black)(-16)))-8#

#x = 7/5 xx -8#

#x = -56/5#