How do you solve #10x - 10x + 2x + 2x - 3x - 1= 1#?

1 Answer
Apr 17, 2017

See the entire solution process below:

Explanation:

First, combine all the like terms on the left side of the equation:

#(10 - 10 + 2 + 2 - 3)x - 1 = 1#

#1x - 1 = 1#

#x - 1 = 1#

Now, add #color(red)(1)# to each side of the equation to solve for #x# while keeping the equation balanced:

#x - 1 + color(red)(1) = 1 + color(red)(1)#

#x - 0 = 2#

#x = 2#