First, add #color(red)(15x)# and subtract #color(blue)(86)# from each side of the equation to isolate the #x# term while keeping the equation balanced:
#-15x - 169 + color(red)(15x) - color(blue)(86) = 86 + 2x + color(red)(15x) - color(blue)(86)#
#-15x + color(red)(15x) - 169 - color(blue)(86) = 86 - color(blue)(86) + 2x + color(red)(15x)#
#0 - 255 = 0 + (2 + color(red)(15))x#
#-255 = 17x#
Now, divide each side of the equation by #color(red)(17)# to solve the equation for #x# while keeping the equation balanced:
#-255/color(red)(17) = (17x)/color(red)(17)#
#-15 = (color(red)(cancel(color(black)(17)))x)/cancel(color(red)(17))#
#-15 = x#
#x = -15#