How do you solve #15y - \frac { 11} { 2} = \frac { 11} { 2} y + 2#?

2 Answers
Jul 24, 2017

You can save yourself some trouble and a possible source of error by multiplying everything by #2#

Explanation:

#->30y-11=11y+4#

Now move the #y#'s to one side, and the numbers to the other, by subtracting #11y# from both sides and adding #11#:

#->30y-cancel11-11y+cancel11=cancel(11y)+4-cancel(11y)+11#

#->19y=15->y=15/19#

Jul 24, 2017

#y=15/19#

Explanation:

#"to eliminate the fractions multiply ALL terms by 2 the"#
#"denominator of the fractions"#

#(2xx15y)-(cancel(2)^1xx11/cancel(2)^1)=(cancel(2)^1xx(11y)/cancel(2)^1)+(2xx2)#

#rArr30y-11=11y+4larrcolor(red)" no fractions"#

#"subtract 11y from both sides"#

#30y-11y-11=cancel(11y)cancel(-11y)+4#

#rArr19y-11=4#

#"add 11 to both sides"#

#19ycancel(-11)cancel(+11)=4+11#

#rArr19y=15#

#"divide both sides by 19"#

#(cancel(19) y)/cancel(19)=15/19#

#rArry=15/19#

#color(blue)"As a check"#

Substitute this value into the equation and if left side equals right side then it is the solution.

#"left "=(15xx15/19)-11/2=225/19-11/2=241/38#

#"right "=(11/2xx15/19)+2=165/38+2=241/38#

#rArry=15/19" is the solution"#