How do you solve #15y - \frac { 11} { 2} = \frac { 11} { 2} y + 2#?
2 Answers
You can save yourself some trouble and a possible source of error by multiplying everything by
Explanation:
Now move the
Explanation:
#"to eliminate the fractions multiply ALL terms by 2 the"#
#"denominator of the fractions"#
#(2xx15y)-(cancel(2)^1xx11/cancel(2)^1)=(cancel(2)^1xx(11y)/cancel(2)^1)+(2xx2)#
#rArr30y-11=11y+4larrcolor(red)" no fractions"#
#"subtract 11y from both sides"#
#30y-11y-11=cancel(11y)cancel(-11y)+4#
#rArr19y-11=4#
#"add 11 to both sides"#
#19ycancel(-11)cancel(+11)=4+11#
#rArr19y=15#
#"divide both sides by 19"#
#(cancel(19) y)/cancel(19)=15/19#
#rArry=15/19#
#color(blue)"As a check"# Substitute this value into the equation and if left side equals right side then it is the solution.
#"left "=(15xx15/19)-11/2=225/19-11/2=241/38#
#"right "=(11/2xx15/19)+2=165/38+2=241/38#
#rArry=15/19" is the solution"#