First, add #color(red)(16x)# and #color(blue)(44)# to each side of the inequality to isolate the #x# term while keeping the inequality balanced:
#-16x - 2 + color(red)(16x) + color(blue)(44) < -44 - 10x + color(red)(16x) + color(blue)(44)#
#-16x + color(red)(16x) - 2 + color(blue)(44) < -44 + color(blue)(44) - 10x + color(red)(16x)#
#0 + 42 < 0 + (-10 + color(red)(16))x#
#42 < 6x#
Now, divide each side of the inequality by #color(red)(6)# to solve for #x# while keeping the inequality balanced:
#42/color(red)(6) < (6x)/color(red)(6)#
#7 < (color(red)(cancel(color(black)(6)))x)/cancel(color(red)(6))#
#7 < x#
To write the solution in terms of #x# we can reverse or "flip" the entire inequality:
#x > 7#