Given #color(brown)(-17b+23=-4-8b)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Stage 1")#
#color(green)("A quick note")#
#color(purple)("Changing the equation so that we have all the 'b' terms on the left")#
#color(purple)("of the equals sign")#
#color(purple)("If we can change the right hand side (RHS) so that "-8b" becomes 0. Then it has no effect on that side's -4")#
To change -8b onto 0 we add 8b so -8b becomes -8b+8b.
#color(green)("What we do to one side we do to the other:")#
#color(red)("Add "color(blue)(+8b)color(white)(.) underline("to both sides"))#
#color(brown)(-17b+23color(blue)(+8b)=-4-8b color(blue)(+8b)#
Giving:
#color(brown)(-17bcolor(blue)(+8b)+23=-4+0#
#-9b+23=-4#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Stage 2")#
Multiply both sides by (-1). This changes -9b into +9b
#color(brown)(+9b-23=+4)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Stage 3")#
Remove -23 from LHS
#color(red)("Add "color(blue)(+23)color(white)(.)underline("to both sides"))#
#color(brown)(+9b-23color(blue)(+23)=+4color(blue)(+23))#
#color(brown)(9b=27)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Stage 3")#
Divide both sides by 9 ( the same thing as #color(blue)(xx 1/9)# )
#color(brown)(9color(blue)(xx 1/9) xxb=27color(blue)(xx1/9))#
#color(brown)(9/(color(blue)(9))xxb = 27/(color(blue)(9)) #
But #9/9=1 " and "27/9=3#
#color(green)(1xxb=3#
# b=3#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~