How do you solve #2^(8x-3) = 5^(6x-9)# ?
1 Answer
Feb 16, 2017
Explanation:
For
#5=2^(log_2 5)#
Thus
#color(white)=>2^(8x-3)=5^(6x-9)#
#=>2^(8x-3)=(2^(log_2 5))^(6x-9)#
#=>2^(8x-3)=2^((log_2 5)(6x-9))#
#=>8x-3=(log_2 5)(6x-9)#
#=>8x-3=6xlog_2 5-9log_2 5#
#=>8x-6xlog_2 5=3-9log_2 5#
#=>x(8-6log_2 5)=3-9log_2 5#
#=>x=(3-9log_2 5)/(8-6log_2 5)#
Another way:
#2=5^(log_5 2)#
So
#color(white)=>2^(8x-3)=5^(6x-9)#
#=>5^((log_5 2)(8x-3))=5^(6x-9)#
#=>8xlog_5 2-3log_5 2 = 6x-9#
#=>x(8log_5 2-6)=3log_5 2 -9#
#=>x=(3log_5 2 -9)/(8log_5 2-6)#