How do you solve #2 sqrt 12 + 4 sqrt 27#?

2 Answers
May 17, 2018

Answer:

#2 sqrt 12 + 4 sqrt 27=16sqrt3#

Explanation:

show below

#2 sqrt 12 + 4 sqrt 27=2sqrt(4*3)+4sqrt(9*3)#

#2*sqrt4*sqrt3+4*sqrt9*sqrt3=2*2*sqrt3+4*3*sqrt3#

#4sqrt3+12sqrt3=16sqrt3#

May 17, 2018

Answer:

See a solution process below:

Explanation:

First, rewrite the terms under the radicals as:

#2sqrt(4 * 3) + 4sqrt(9 * 3) =>#

#2sqrt(4)sqrt(3) + 4sqrt(9)sqrt(3) =>#

#(2 * 2)sqrt(3) + (4 * 3)sqrt(3) =>#

#4sqrt(3) + 12sqrt(3)#

Now, we can factor out the common term giving:

#(4 + 12)sqrt(3) =>#

#16sqrt(3)#