You cannot do crossing over
#2/(x+5)>4/(x+5)+3#
Let's perform some simplifications
#2/(x+5)-4/(x+5)-3>0#
#(2-4-3(x+5))/(x+5)>0#
#(2-4-3x-15)/(x+5)>0#
#(-3x-17)/(x+5)>0#
Let #f(x)=(-3x-17)/(x+5)#
Let's build the sign chart
#color(white)(aaaa)##x##color(white)(aaaaaaa)##-oo##color(white)(aaaaaa)##-17/3##color(white)(aaaaaaa)##-5##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##-3x-17##color(white)(aaaaaa)##+##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##-#
#color(white)(aaaa)##x+5##color(white)(aaaaaaaaaa)##-##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaaa)##-##color(white)(aaaaaaa)##+##color(white)(aaaa)##||##color(white)(aaa)##-#
Therefore,
#f(x)>0# when #x in (-17/3, -5)#
graph{2/(x+5)-4/(x+5)-3 [-24.25, 11.8, -10.45, 7.57]}