You cannot do crossing over

#2/(x+5)>4/(x+5)+3#

Let's perform some simplifications

#2/(x+5)-4/(x+5)-3>0#

#(2-4-3(x+5))/(x+5)>0#

#(2-4-3x-15)/(x+5)>0#

#(-3x-17)/(x+5)>0#

Let #f(x)=(-3x-17)/(x+5)#

Let's build the sign chart

#color(white)(aaaa)##x##color(white)(aaaaaaa)##-oo##color(white)(aaaaaa)##-17/3##color(white)(aaaaaaa)##-5##color(white)(aaaaaaa)##+oo#

#color(white)(aaaa)##-3x-17##color(white)(aaaaaa)##+##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##-#

#color(white)(aaaa)##x+5##color(white)(aaaaaaaaaa)##-##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaaa)##-##color(white)(aaaaaaa)##+##color(white)(aaaa)##||##color(white)(aaa)##-#

Therefore,

#f(x)>0# when #x in (-17/3, -5)#

graph{2/(x+5)-4/(x+5)-3 [-24.25, 11.8, -10.45, 7.57]}