How do you solve #24x ^ { 2} - 14x = 6#?

1 Answer
Nov 28, 2016

#x=(7+sqrt 193)/24, (7-sqrt 193)/24#

Explanation:

Solve #24x^2-14x=6#

Subtract #6# from both sides.

#24x-14x-6=0#

This is a quadratic equation in the form #ax^2+bx+c#, where #a=24#, #b=-14#, and #c=-6#. This equation can be solved using the quadratic formula.

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Substitute the given values into the formula.

#x=(-(-14)+-sqrt(-14^2-4*24*-6))/(2*24)#

#x=(14+-sqrt(196-(-576)))/48#

#x=(14+-sqrt(772))/48#

Prime factorize #sqrt772#.

#x=(14+-sqrt(2xx2xx193))/48#

I used a prime factorization calculator at http://www.calculatorsoup.com/calculators/math/prime-factors.php

#x=(14+-2sqrt 193)/48#

Simplify.

#x=(7+-sqrt 193)/24#

#x=(7+sqrt 193)/24, (7-sqrt 193)/24#