How do you solve #2x - 24= x#?

3 Answers
Apr 1, 2018

#x=24#

Explanation:

#"subtract x from both sides of the equation"#

#2x-x-24=cancel(x)cancel(-x)#

#rArrx-24=0#

#"add 24 to both sides"#

#xcancel(-24)cancel(+24)=0+24#

#rArrx=24#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution.

#"left "=(2xx24)-24=48-24=24#

#"right "=24#

#rArrx=24" is the solution"#

Apr 1, 2018

#x=24#

Explanation:

We can start by subtracting #x# from both sides to get:

#x-24=0#

Finally, we can add #24# to both sides to get:

#x=24#

Hope this helps!

Apr 1, 2018

#x =24#

Explanation:

Bring all the #x# terms to the LHS so minus #x# from both sides

#2x-x-24=color(red)(x-x)#

Bring all the non x terms to the RHS, so add 24 to both sides

#x color(red)(-24+24)=24#

#x =24#