How do you solve #2x^3 - x^2 + 2x - 1 = 0#?

1 Answer
Jan 12, 2016

Factor by grouping, then identify zeros:

#x=1/2#, #x=i#, #x=-i#

Explanation:

Factor by grouping:

#2x^3-x^2+2x-1#

#=(2x^3-x^2)+(2x-1)#

#=x^2(2x-1)+1(2x-1)#

#=(x^2+1)(2x-1)#

This has one Real zero, namely #x=1/2# and two Complex zeros, #x=+-i#