How do you solve #2x-3y=-2# and #4x+y=24#?

2 Answers
May 17, 2017

#(5,4)#

Explanation:

#2x-3color(red)(y)=-2to(1)#

#4x+color(red)(y)=24to(2)#

#(2)" can be expressed as "color(red)(y)=24-4x#

#color(red)(y)=24-4x" may now be substituted into " (1)#

#rArr2x-3(24-4x)=-2#

#rArr2x-72+12x=-2larr" distributing bracket"#

#rArr14x-72=-2larr" simplifying left side"#

#"add 72 to both sides"#

#14xcancel(-72)cancel(+72)=-2+72#

#rArr14x=70#

#"divide both sides by 14"#

#(cancel(14) x)/cancel(14)=70/14#

#rArrx=5#

#"substitute this value into " y=24-4x" and evaluate"#

#rArry=24-(4xx5)=24-20=4#

#color(blue)"As a check"#

#"substitute these values into " (1)" and if left side"#
#"equals right side then these values are the solution"#

#(2xx5)-(3xx4)=10-12=-2=" right side"#

#rArr"point of intersection "=(5,4)#
graph{(y-2/3x-2/3)(y+4x-24)=0 [-10, 10, -5, 5]}

May 17, 2017

#x =5 and y=4#

Explanation:

The other contributors have shown the methods of substitution, graphical, and matrices.

Let's use elimination:
#color(white)(...........)2x-3y" " =-2#.............................A
#color(white)(...........)4x+y" " =+24#............................B

We would like to make additive inverses and we note that the #y#-terms already have opposite signs. Make #B# three times bigger:

#B xx3:color(white)(....)12xcolor(blue)(+3y) =+72#............................C
#color(white)(..................)2xcolor(blue)(-3y) =-2#..............................A

#A+C: color(white)(....)14xcolor(white)(......)=70" "larrdiv 14#
#color(white)(.........................)x= 5#

Substitute #5# for #x# in B to find the value of #y#

#4(5) +y =24#
#20+y =24#
#" "y = 4#