How do you solve #3^(2x+1) = 5#?
2 Answers
Jun 30, 2017
I got:
Explanation:
We take the natural log of both sides:
apply a property of logs and write:
rearrange:
Jun 30, 2017
Explanation:
#"using the "color(blue)"law of logarithms"#
#• logx^nhArrnlogx#
#3^(2x+1)=5#
#"take ln (natural log) of both sides"#
#rArrln3^(2x+1)=ln5#
#rArr(2x+1)ln3=ln5#
#rArr2x+1=ln5/ln3larr" subtract 1 from both sides"#
#rArr2x=(ln5/ln3)-1larr" divide both sides by 2"#
#rArrx=1/2[(ln5/ln3)-1]~~0.232" 3 dec. places"#