# How do you solve #3^(2x+1) = 5#?

##### 2 Answers

Jun 30, 2017

#### Answer:

I got:

#### Explanation:

We take the natural log of both sides:

apply a property of logs and write:

rearrange:

Jun 30, 2017

#### Answer:

#### Explanation:

#"using the "color(blue)"law of logarithms"#

#• logx^nhArrnlogx#

#3^(2x+1)=5#

#"take ln (natural log) of both sides"#

#rArrln3^(2x+1)=ln5#

#rArr(2x+1)ln3=ln5#

#rArr2x+1=ln5/ln3larr" subtract 1 from both sides"#

#rArr2x=(ln5/ln3)-1larr" divide both sides by 2"#

#rArrx=1/2[(ln5/ln3)-1]~~0.232" 3 dec. places"#