How do you solve #-30x - 6= - 9x - 3#?

1 Answer
Dec 29, 2016

#x = -1/7#

Explanation:

Add the necessary value to each side of the equation to isolate the #x# terms on one side of the equation and the constants on the other side of the equation while keeping the equation balanced:

#-30x - 6 + color(red)(30x) + color(blue)(3) = -9x - 3 + color(red)(30x) + color(blue)(3)#

#-30x + color(red)(30x) - 6 + color(blue)(3) = -9x + color(red)(30x) - 3 + color(blue)(3)#

#0 -6 + color(blue)(3) = -9x + color(red)(30x) - 0#

#-6 + color(blue)(3) = -9x + color(red)(30x)#

We can next combine like terms:

#-3 = (-9 + 30)x#

#-3 = 21x#

Now, we can solve for #x# while keeping the equation balanced:

#-3/color(red)(21) = (21x)/color(red)(21)#

#-1/7 = (color(red)(cancel(color(black)(21)))x)/cancel(color(red)(21))#

#-1/7 = x#

#x = -1/7#