How do you solve #3a+b=4# and #a-2b=6# using substitution?
1 Answer
Mar 3, 2018
Explanation:
#3a+b=4to(1)#
#a-2b=6to(2)#
#"from equation "(2)" we obtain "a=6+2bto(3)#
#color(blue)"substitute "a=6+2b" into equation "(1)#
#rArr3(6+2b)+b=4#
#rArr18+6b+b=4#
#rArr18+7b=4#
#"subtract 18 from both sides"#
#cancel(18)cancel(-18)+7b=4-18#
#rArr7b=-14#
#"divide both sides by 7"#
#(cancel(7) b)/cancel(7)=(-14)/7#
#rArrb=-2#
#color(blue)"substitute "b=-2" in equation "(1)#
#3a-2=4#
#rArr3a=4+2=6#
#rArra=6/3=2#
#"the solution is "a=2,b=-2#