How do you solve #(3x - 2) ^ { 2} + 54= 0#?

2 Answers
Jun 4, 2018

#x=(2+3sqrt6i)/3,# #(2-3sqrt6i)/3#

Refer to the explanation.

Explanation:

Solve:

#(3x-2)^2+54=0#

Expand #(3x-2)^2# using the FOIL method.
https://www.ipracticemath.com/learn/algebra/foil-method-of-binomial-multiplication

#9x^2-12x+4+54=0#

Simplify #4+54# to #58#.

#9x^2-12x+58=0# is a quadratic equation in standard form:

#ax^2+bx+c=0#,

where:

#a=9#, #b=-12#, #c=58#

Solve using the quadratic formula:

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Plug in the known values and solve for #x#.

#x=(-(-12)+-sqrt((-12)^2-4*9*58))/(2*9)#

#x=(12+-sqrt(-1994))/18#

Prime factorize #sqrt(-1944)#.

#x=(12+-sqrt(-2*2^2*3*3^2*3^2))/18#

Apply rule: #sqrt(a^2)=a#

#x=(12+-2xx3xx3sqrt(-2xx3))/18#

#x=(12+-18sqrt(-6))/18#

Simplify #sqrt(-6)# to #sqrt6i#

#x=(12+-18sqrt6i)/18#

#x=(12+18sqrt6i)/18, # #(12-18sqrt6i)/18#

Simplify by dividing the integers by the GCF #6#.

#x=(2+3sqrt6i)/3,# #(2-3sqrt6i)/3#

Jun 4, 2018

# (2+-3isqrt6)/3#.

Explanation:

Given that, #(3x-2)^2+54=0 rArr (3x-2)^2=-54#.

In other words, #(3x-2)^2 lt 0#, so, no real solution.

To find soln. in #CC#, we have, #(3x-2)=sqrt(-54)=+-3isqrt6#.

#:. 3x=2+-3isqrt6#.

#:. x=(2+-3isqrt6)/3#.