How do you solve #|3x - 2| = | 4- x |#?

1 Answer
Aug 13, 2017

#color(red)(x=-1)# or #color(blue)(x=3)#

Explanation:

Note that if #abs(3x-2) = 0# then #x=2/3#
and that if #abs(4-x)=0# then #x=4#

We therefore want to consider the 3 options for #x#
Option [1]: #x <2/3#
Option [2]: #x in [2/3,4]#
Option [3]: #x > 4#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Option [1]
If #x <2/3#
then
#color(white)("XXX")abs(3x-2)=2-3xcolor(white)("xxx")#since #(3x-2)# would be less than zero
and
#color(white)("XXX")abs(4-x)=4-xcolor(white)("xxx")since #4-x# would be greater than zero

So #abs(3x-2)=abs(4-x)# (for this option)
means we need to solve the equation
#color(white)("XXX")2-3x=4-x#
#color(white)("XXX")rarr -2x=2#
#color(white)("XXX")rarr x=-1#
(which is consistent with the requirement that #x < 2/3#)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Option [2]
If #x in [2/3,4]#
then (using reasoning similar to above)
#color(white)("XXX")abs(3x-2)=3x-2#
and
#color(white)("XXX")abs(4-x)=4-x#

...and we need to solve
#color(white)("XXX")3x-2=4-x#
#color(white)("XXX")rarr 2x=6#
#color(white)("XXX")rarr x=3#
(consistent with the requirement #x in [2/3,4]#)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Option [3]
If #x > 4#
then
#color(white)("XXX")abs(3x-2) = 3x-2#
and
#color(white)("XXX")abs(4-x)=x-4#

...and we need to solve
#color(white)("XXX")3x-2=x-4#
#color(white)("XXX")2x=6#
#color(white)("XXX")x=3#
but this is not consistent with the requirement #x > 4#
so we can eliminate this as an extraneous result.

================================================

The only valid results are
#color(white)("XXX")x=-1 or x= 3#