How do you solve #3x^{2} + 5x - 1= 0#?

1 Answer
Sep 12, 2016

Use the quadratic formula to find:

#x = -5/6+-sqrt(37)/6#

Explanation:

The equation:

#3x^2+5x-1 = 0#

is in standard quadratic form:

#ax^2+bx+c=0#

with #a=3#, #b=5# and #c=-1#

This has solutions given by the quadratic formula:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#color(white)(x) = (-5+-sqrt(5^2-4(3)(-1)))/(2*3)#

#color(white)(x) = (-5+-sqrt(25+12))/6#

#color(white)(x) = (-5+-sqrt(37))/6#

#color(white)(x) = -5/6+-sqrt(37)/6#