How do you solve #3x + 3y = - 9; 6x + 2y = 2#?

1 Answer
Jan 30, 2018

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#3x +3y = -9#

#(3x +3y)/color(red)(3) = -9/color(red)(3)#

#(3x)/color(red)(3) +(3y)/color(red)(3) = -3#

#x + y = -3#

#x + y - color(red)(y) = -3 - color(red)(y)#

#x + 0 = -3 - y#

#x = -3 - y#

Step 2) Substitute #(-3 - y)# for #x# in the second equation and solve for #y#:

#6x + 2y = 2# becomes:

#6(-3 - y) + 2y = 2#

#(6 xx -3) - (6 xx y) + 2y = 2#

#-18 - 6y + 2y = 2#

#-18 + (-6 + 2)y = 2#

#-18 + (-4)y = 2#

#-18 - 4y = 2#

#-18 + color(red)(18) - 4y = 2 + color(red)(18)#

#0 - 4y = 20#

#-4y = 20#

#(-4y)/color(red)(-4) = 20/color(red)(-4)#

#(color(red)(cancel(color(black)(-4)))y)/cancel(color(red)(-4)) = -5#

#y = -5#

Step 3) Substitute #-5# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = -3 - y# becomes:

#x = -3 - (-5)#

#x = -3 + 5#

#x = 2#

The Solution Is:

#x = 2# and #y = -5#

Or

#(2, -5)#