How do you solve #(3x)/(x^2+3x)>=1# ?

#(3x)/(x^2+3x)>=1 => (3x-x(x+3))/(x(x+3))>=0 => (-x^2)/(x(x+3))>=0 *-1 => (x^2)/(x(x+3))<=0#
#x^2=0 => x=0#
#x=0#
#x+3=0 => x=-3#

#x=0 (2k)#
Answer:
#(-oo;-3)#

1 Answer
Jul 18, 2018

The solution is #x in (-3,0]#

Explanation:

The first step is ok

#x^2/(x(x+3))<=0#

Divide by #x#

#=>#, #x/(x+3)<=0#

Let #f(x)=x/(x+3)#

Make a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-3##color(white)(aaaaaaaa)##0##color(white)(aaaaaaaaa)##+oo#

#color(white)(aaaa)##x##color(white)(aaaaaaaaa)##-##color(white)(aaaaaa)##-##color(white)(aaaa)##0##color(white)(aaaa)##+#

#color(white)(aaaa)##x+3##color(white)(aaaaa)##-##color(white)(aaa)##||##color(white)(aaa)##+##color(white)(aaaaaaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaa)##||##color(white)(aaa)##-##color(white)(aaaa)##0##color(white)(aaaa)##+#

Therefore,

#f(x)<=0# when #x in (-3,0]#

graph{x/(x+3) [-20.28, 20.27, -10.14, 10.14]}