How do you solve #4(x-1)-2(3x+5)=-3x-1#?

1 Answer
Feb 21, 2017

See the entire solution process below:

Explanation:

First, expand the two terms within parenthesis on the left side of the equation:

#color(red)(4)(x - 1) - color(blue)(2)(3x + 5) = -3x - 1#

#(color(red)(4) xx x) - (color(red)(4) xx 1) - (color(blue)(2) xx 3x) - (color(blue)(2) xx 5) = -3x - 1#

#4x - 4 - 6x - 10 = -3x - 1#

Next, combine like terms on the left side of the equation:

#4x - 6x - 4 - 10 = -3x - 1#

#(4 - 6)x - 14 = -3x - 1#

#-2x - 14 = -3x - 1#

Now, add #color(red)(3x)# and #color(blue)(14)# to each side of the equation to solve for #x# while keeping the equation balanced:

#-2x - 14 + color(red)(3x) + color(blue)(14) = -3x - 1 + color(red)(3x) + color(blue)(14)#

#-2x + color(red)(3x) - 14 + color(blue)(14) = -3x + color(red)(3x) - 1 + color(blue)(14)#

#(-2 + 3)x - 0 = 0 + 13#

#1x = 13#

#x = 13#