First, expand the two terms within parenthesis on the left side of the equation:
#color(red)(4)(x - 1) - color(blue)(2)(3x + 5) = -3x - 1#
#(color(red)(4) xx x) - (color(red)(4) xx 1) - (color(blue)(2) xx 3x) - (color(blue)(2) xx 5) = -3x - 1#
#4x - 4 - 6x - 10 = -3x - 1#
Next, combine like terms on the left side of the equation:
#4x - 6x - 4 - 10 = -3x - 1#
#(4 - 6)x - 14 = -3x - 1#
#-2x - 14 = -3x - 1#
Now, add #color(red)(3x)# and #color(blue)(14)# to each side of the equation to solve for #x# while keeping the equation balanced:
#-2x - 14 + color(red)(3x) + color(blue)(14) = -3x - 1 + color(red)(3x) + color(blue)(14)#
#-2x + color(red)(3x) - 14 + color(blue)(14) = -3x + color(red)(3x) - 1 + color(blue)(14)#
#(-2 + 3)x - 0 = 0 + 13#
#1x = 13#
#x = 13#