How do you solve #4^ { x - 1} \cdot 8= 2^ { - 4x }#?
1 Answer
Real solution:
#x = -1/6#
Complex solutions:
#x = -1/6+(npi)/(3 ln 2)i" "# for any integer#n#
Explanation:
Note that:
#4^(x-1) = (2^2)(x-1) = 2^(2(x-1)) = 2^(2x-2)#
So we find:
#2^(2x+1) = 2^(2x-2)*2^3 = 4^(x-1)*8 = 2^(-4x)#
Real solutions
Note that
#2^(2x+1) = 2^(-4x)#
we must have:
#2x+1 = -4x#
for real values of
Hence:
#6x = -1#
So:
#x = -1/6#
Complex solutions
Note that:
#e^(2npii) = 1" "# for any integer#n#
Hence we find:
#2^((2npii)/(ln 2)) = (e^(ln 2))^((2npii)/(ln 2)) = e^(2npii) = 1#
Going back to our equation:
#2^(2x+1) = 2^(-4x)#
We can deduce that:
#2x+1 = -4x+(2npii)/ln 2#
Hence:
#6x = -1+(2npii)/ln 2#
So:
#x = -1/6+(npi)/(3 ln 2)i" "# for any integer#n# .