First, factor this equation to give:
#(4x^(1/2) - 5)(x^(1/2) - 1) = 0#
Next, solve for #(4x^(1/2) - 5)#:
#((4x^(1/2) - 5)(x^(1/2) - 1))/(x^(1/2) - 1) = 0/(x^(1/2) - 1)#
#((4x^(1/2) - 5)cancel((x^(1/2) - 1)))/cancel(x^(1/2) - 1) = 0#
#4x^(1/2) - 5 = 0#
#4x^(1/2) - 5 + 5 = 0 + 5#
#4x^(1/2) = 5#
#(4x^(1/2))/4 = 5/4#
#x^(1/2) = 5/4#
#x^(1/2) * x^(1/2) = 5/4 * 5/4#
#x = 25/16#
Finally, solve for #(x^(1/2) - 1)#
#((4x^(1/2) - 5)(x^(1/2) - 1))/(4x^(1/2) - 5) = 0/(4x^(1/2) - 5)#
#(cancel((4x^(1/2) - 5))(x^(1/2) - 1))/cancel(4x^(1/2) - 5) = 0#
#x^(1/2) - 1 = 0#
#x^(1/2) - 1 + 1 = 0 + 1#
#x^(1/2) = 1#
#x^(1/2) * x^(1/2) = 1 * 1#
#x = 1#