How do you solve #5m - 3m + 2= 6m - 4#?

3 Answers
Sep 24, 2017

#m=-1.5 or -3/2#

Explanation:

#5m-3m+2=6m-4#
#2m+2=6m-4#
#2m-6m=-4-2#
#-4m=6#
#4m=-6#
#m=-6/4=-3/2 or -1.5#

Sep 24, 2017

See a solution process below:

Explanation:

First, combine like terms on the left side of the equation:

#5m - 3m + 2 = 6m - 4#

#(5 - 3)m + 2 = 6m - 4#

#2m + 2 = 6m - 4#

Next, subtract #color(red)(2m)# and add #color(blue)(4)# to each side of the equation to isolate the #m# term while keeping the equation balanced:

#2m - color(red)(2m) + 2 + color(blue)(4) = 6m - color(red)(2m) - 4 + color(blue)(4)#

#0 + 6 = (6 - color(red)(2))m - 0#

#6 = 4m#

Now, divide each side of the equation by #color(red)(4)# to solve for #m# while keeping the equation balanced:

#6/color(red)(4) = (4m)/color(red)(4)#

#(2 xx 3)/color(red)(2 xx 2) = (color(red)(cancel(color(black)(4)))m)/cancel(color(red)(4))#

#(color(red)(cancel(color(black)(2))) xx 3)/color(red)(color(black)(cancel(color(red)(2))) xx 2) = m#

#3/2 = m#

#m = 3/2#

Sep 24, 2017

#m=1.5#

Explanation:

First do the subtraction #5m-3m#:
#2m+2=6m-4#

Then rearrange the equation to have #m's# on one side and numbers on the other. Do the subtraction and addition of #6m-2m#
and #4+2#

#6m-2m=2+4->4m=6#

Divide by #6# to isolate #m# and simplify the fraction:
#m=6/4->3/2->1.5#

#m=1.5#