How do you solve #5x - 2> 3x + 11#?

1 Answer
May 4, 2017

See a solution process below:

Explanation:

First, add #color(red)(2)# and subtract #color(blue)(3x)# from each side of the inequality to isolate the #x# term while keeping the inequality balanced:

#-color(blue)(3x) + 5x - 2 + color(red)(2) > -color(blue)(3x) + 3x + 11 + color(red)(2)#

#(-color(blue)(3) + 5)x - 0 > 0 + 13#

#2x - 0 > 0 + 13#

#2x > 13#

Now, divide each side of the inequality by #color(red)(2)# to solve for #x# while keeping the inequality balanced:

#(2x)/color(red)(2) > 13/color(red)(2)#

#(color(red)(cancel(color(black)(2)))x)/cancel(color(red)(2)) > 13/2#

#x > 13/2#

Or

#x > 6.5#