How do you solve #5x - 23= - 10x + 47#?
1 Answer
Jan 27, 2017
Explanation:
Collect terms in x on the left side of the equation and numeric values on the right side.
add 10x to both sides.
#5x+10x-23=cancel(-10x)cancel(+10x)+47#
#rArr15x-23=47# add 23 to both sides.
#15xcancel(-23)cancel(+23)=47+23#
#rArr15x=70# To solve for x, divide both sides by 15
#(cancel(15) x)/cancel(15)=70/15#
#rArrx=70/15=14/3#
#color(blue)"As a check"# Substitute this value into the equation and if the left side equals the right side then it is a solution.
#"left side "=(5xx14/3)-23=70/3-69/3=1/3#
#"right side "=(-10xx14/3)+47=-140/3+141/3=1/3#
#rArrx=14/3" is the solution"#