How do you solve #-5x - 57= 93- 15x#?

1 Answer
Nov 10, 2017

See a solution process below:

Explanation:

First, add #color(red)(57)# and #color(blue)(15x)# to each side of the equation to isolate the #x# term while keeping the equation balanced:

#-5x - 57 + color(red)(57) + color(blue)(15x) = 93 - 15x + color(red)(57) + color(blue)(15x)#

#-5x + color(blue)(15x) - 57 + color(red)(57) = 93 + color(red)(57) - 15x + color(blue)(15x)#

#(-5 + color(blue)(15))x - 0 = 150 - 0#

#10x = 150#

Now, divide each side of the equation by #color(red)(10)# to solve for #x# while keeping the equation balanced:

#(10x)/color(red)(10) = 150/color(red)(10)#

#(color(red)(cancel(color(black)(10)))x)/cancel(color(red)(10)) = 15#

#x = 15#