First, add #color(red)(57)# and #color(blue)(15x)# to each side of the equation to isolate the #x# term while keeping the equation balanced:
#-5x - 57 + color(red)(57) + color(blue)(15x) = 93 - 15x + color(red)(57) + color(blue)(15x)#
#-5x + color(blue)(15x) - 57 + color(red)(57) = 93 + color(red)(57) - 15x + color(blue)(15x)#
#(-5 + color(blue)(15))x - 0 = 150 - 0#
#10x = 150#
Now, divide each side of the equation by #color(red)(10)# to solve for #x# while keeping the equation balanced:
#(10x)/color(red)(10) = 150/color(red)(10)#
#(color(red)(cancel(color(black)(10)))x)/cancel(color(red)(10)) = 15#
#x = 15#