Step 1)
Expand the terms within parenthesis by multiplying by #color(red)(6)#:
#(color(red)(6) xx 3.2y) - (color(red)(6) xx 1) = 3.6#
#19.2y - 6 = 3.6#
Step 2)
Add #color(red)(6)# to each side of the equation to isolate the #y# term while keeping the equation balanced:
#19.2y - 6 + color(red)(6) = 3.6 + color(red)(6)#
#19.2y - 0 = 9.6#
#19.2y = 9.6#
Step 3)
Divide each side of the equation y #color(blue)(19.2)# to solve for #y# while keeping the equation balanced:
#(19.2y)/color(blue)(19.2) = 9.6/color(blue)(19.2)#
#(color(blue)(cancel(color(black)(19.2)))y)/cancel(color(blue)(19.2)) = 9.6/color(blue)((9.6 xx 2)#
#y = color(blue)(cancel(color(black)(9.6)))/(cancel(color(blue)(9.6)) xx 2)#
#y = 1/2#