How do you solve #6(3.2y-1)= 3.6 #?

1 Answer
Jan 2, 2017

See full explanation below.

Explanation:

Step 1)

Expand the terms within parenthesis by multiplying by #color(red)(6)#:

#(color(red)(6) xx 3.2y) - (color(red)(6) xx 1) = 3.6#

#19.2y - 6 = 3.6#

Step 2)

Add #color(red)(6)# to each side of the equation to isolate the #y# term while keeping the equation balanced:

#19.2y - 6 + color(red)(6) = 3.6 + color(red)(6)#

#19.2y - 0 = 9.6#

#19.2y = 9.6#

Step 3)

Divide each side of the equation y #color(blue)(19.2)# to solve for #y# while keeping the equation balanced:

#(19.2y)/color(blue)(19.2) = 9.6/color(blue)(19.2)#

#(color(blue)(cancel(color(black)(19.2)))y)/cancel(color(blue)(19.2)) = 9.6/color(blue)((9.6 xx 2)#

#y = color(blue)(cancel(color(black)(9.6)))/(cancel(color(blue)(9.6)) xx 2)#

#y = 1/2#