How do you solve #6 / (x-4) + 9/x = -36/(x^2 - 4x)#?
1 Answer
Explanation:
Before starting, it is important to note the restrictions in this equation. When the denominator of each fraction is set to not equal
#x-4!=0color(white)(XXXXX)x!=0color(white)(XXXXX)x^2-4x!=0#
#x!=4color(white)(XXXXXXXXXXXXXXX)x(x-4)!=0#
#color(white)(XXXXXXXXXXXXXXXXXX)x!=0,4#
Thus, the restrictions are
Solving the Equation
#6/(x-4)+9/x=-36/(x^2-4x)#
#(6color(orange)x)/(color(orange)x(x-4))+(9color(blue)((x-4)))/(xcolor(blue)((x-4)))=-36/(x^2-4x)#
#(6x)/(x^2-4x)+(9x-36)/(x^2-4x)=-36/(x^2-4x)#
#(15x-36)/(x^2-4x)=-36/(x^2-4x)#
#color(purple)((x^2-4x))((15x-36)/(x^2-4x))=color(purple)((x^2-4x))(-36/(x^2-4x))#
#color(red)cancelcolor(purple)((x^2-4x))((15x-36)/color(red)cancelcolor(black)((x^2-4x)))=color(red)cancelcolor(purple)((x^2-4x))(-36/color(red)cancelcolor(black)((x^2-4x)))#
#15x-36=-36#
#15x=0#
#x=0#
However, looking back at the restrictions
#color(green)(|bar(ul(color(white)(a/a)x="no solution"color(white)(a/a)|)))#