How do you solve #6 / (x-4) + 9/x = -36/(x^2 - 4x)#?

1 Answer
Mar 9, 2016

#x="no solution"#

Explanation:

Before starting, it is important to note the restrictions in this equation. When the denominator of each fraction is set to not equal #0#, the restrictions are:

#x-4!=0color(white)(XXXXX)x!=0color(white)(XXXXX)x^2-4x!=0#

#x!=4color(white)(XXXXXXXXXXXXXXX)x(x-4)!=0#

#color(white)(XXXXXXXXXXXXXXXXXX)x!=0,4#

Thus, the restrictions are #color(red)(|bar(ul(color(white)(a/a)x!=0,4color(white)(a/a)|)))#.

Solving the Equation
#1#. Start by adding the two fractions on the left side of the equation.

#6/(x-4)+9/x=-36/(x^2-4x)#

#(6color(orange)x)/(color(orange)x(x-4))+(9color(blue)((x-4)))/(xcolor(blue)((x-4)))=-36/(x^2-4x)#

#2#. Simplify.

#(6x)/(x^2-4x)+(9x-36)/(x^2-4x)=-36/(x^2-4x)#

#(15x-36)/(x^2-4x)=-36/(x^2-4x)#

#3#. Multiply both sides by #color(purple)(x^2-4x)# to get rid of the denominators.

#color(purple)((x^2-4x))((15x-36)/(x^2-4x))=color(purple)((x^2-4x))(-36/(x^2-4x))#

#4#. Simplify.

#color(red)cancelcolor(purple)((x^2-4x))((15x-36)/color(red)cancelcolor(black)((x^2-4x)))=color(red)cancelcolor(purple)((x^2-4x))(-36/color(red)cancelcolor(black)((x^2-4x)))#

#15x-36=-36#

#5#. Solve for #x#.

#15x=0#

#x=0#

However, looking back at the restrictions #(color(red)(x!=0,4))#, #x=0# is not a valid solution. Therefore:

#color(green)(|bar(ul(color(white)(a/a)x="no solution"color(white)(a/a)|)))#