How do you solve #6^x=72#?
1 Answer
Dec 2, 2016
Explanation:
Using the
#color(blue)"law of logarithms"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(logx^n=nlogx)color(white)(2/2)|)))#
#color(white)(xxxxxxx)"Applies to logs in any base."# Take the natural log ( ln) of both sides.
Using the above law.
#xln6=ln72#
#rArrx=ln72/ln6≈2.387" to 3 decimal places"#