How do you solve #6u + 2= - u ^ { 2}#?

1 Answer
Jun 17, 2018

See a solution process below:

Explanation:

First, put the equation in standard quadratic form:

#color(red)(u^2) + 6u + 2 = color(red)(u^2) - u^2#

#u^2 + 6u + 2 = 0#

or

#1u^2 + 6u + 2 = 0#

Now, use the quadratic formula to solve for #u#. The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(1)# for #color(red)(a)#

#color(blue)(6)# for #color(blue)(b)#

#color(green)(2)# for #color(green)(c)# gives:

#u = (-color(blue)(6) +- sqrt(color(blue)(6)^2 - (4 * color(red)(1) * color(green)(2))))/(2 * color(red)(1))#

#u = (-color(blue)(6) +- sqrt(36 - 8))/2#

#u = (-color(blue)(6) +- sqrt(28))/2#

#u = (-color(blue)(6) +- sqrt(4 * 7))/2#

#u = (-color(blue)(6) +- sqrt(4)sqrt(7))/2#

#u = (-color(blue)(6) +- 2sqrt(7))/2#

#u = -6/2 +- (2sqrt(7))/2#

#u = -3 +- sqrt(7)#

The Solution Set Is:

#u = {-3 - sqrt(7), -3 + sqrt(7)}#