How do you solve #7z ^ { 2} - 8z - 1= 0#?

2 Answers
Apr 22, 2017

Solution: #z~~ 1.26(2dp) , z~~ -0.11(2dp)#

Explanation:

Comparing with standard quadratic equation #ax^2+bx+c =0# we get #7z^2-8z-1 =0 ; a=7 ; b= -8 ; c= -1 D=b^2-4ac = 92# Discriminant (D) is positive , so roots are real.

Roots are #z= -b/(2a) +- sqrt (b^2-4ac)/(2a) or z = 8/14 +- sqrt 92/14 :. z~~ 1.26(2dp) , z~~ -0.11(2dp)#

Solution:#z~~ 1.26(2dp) , z~~ -0.11(2dp)#[Ans]

Apr 22, 2017

#color(red)(z=(4+sqrt23)/7# or #color(red)(z=(4-sqrt23)/7#

Explanation:

#7z^2-8z-1=0#

#:.x=(-b+-sqrt(b^2-4ac))/(2a)#

#:.x=(-(-8)+-sqrt((-8)^2-4(7)(-1)))/(2 xx 7)#

#:.(8+-sqrt(64+28))/14#

#:.(8+-sqrt92)/14#

#:.(8+-sqrt(23*2*2))/14#

#:.color(red)(sqrt2*sqrt2=2#

#:.(8+-2sqrt(23))/14#

#(cancel2^color(red)1(4+-sqrt(23)))/cancel14^color(red)7#

#:.color(red)((4+sqrt(23))/color(red)7# or #color(red)((4-sqrt(23))/7#