How do you solve #8=(1/4)^x#?
1 Answer
May 20, 2018
Explanation:
#"using the "color(blue)"laws of exponents"#
#•color(white)(x)a^mhArr1/a^m" and "(a^m)^n=a^(mn)#
#"left side "=8=2^3#
#"right side "=(1/4)^x=(1/2^2)^x=(2^-2)^x=2^((-2x))#
#rArr2^3=2^(-2x)larrcolor(blue)"equating both sides"#
#"since the bases on both sides are 2 equate the exponents"#
#rArr-2x=3rArrx=-3/2#