How do you solve #-8-\frac{2}{5}x=\frac{1}{2}(x-7)#?

1 Answer
Nov 21, 2017

#x=-5#

Explanation:

#"multiply ALL terms by 10 to eliminate fractions"#
#"10 is the lowest common multiple of 5 and 2"#

#(-8xx10)-(cancel(10)^2xx(2x)/cancel(5)^1)=cancel(10)^5xx1/cancel(2)^1(x-7)#

#rArr-80-4x=5(x-7)larrcolor(blue)"no fractions"#

#rArr-80-4x=5x-35#

#"add 4x to both sides"#

#-80cancel(-4x)cancel(+4x)=5x+4x-35#

#rArr-80=9x-35#

#"add 35 to both sides"#

#-80+35=9xcancel(-35)cancel(+35)#

#rArr9x=-45larrcolor(blue)"reversing the equation"#

#"divide both sides by 9"#

#(cancel(9) x)/cancel(9)=(-45)/9#

#rArrx=-5#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution.

#"left "=-8-2/5xx-5=-8+2=-6#

#"right "=1/2(-5-7)=1/2xx-12=-6#

#rArrx=-5" is the solution"#