How do you solve #-8-\frac{2}{5}x=\frac{1}{2}(x-7)#?
1 Answer
Nov 21, 2017
Explanation:
#"multiply ALL terms by 10 to eliminate fractions"#
#"10 is the lowest common multiple of 5 and 2"#
#(-8xx10)-(cancel(10)^2xx(2x)/cancel(5)^1)=cancel(10)^5xx1/cancel(2)^1(x-7)#
#rArr-80-4x=5(x-7)larrcolor(blue)"no fractions"#
#rArr-80-4x=5x-35#
#"add 4x to both sides"#
#-80cancel(-4x)cancel(+4x)=5x+4x-35#
#rArr-80=9x-35#
#"add 35 to both sides"#
#-80+35=9xcancel(-35)cancel(+35)#
#rArr9x=-45larrcolor(blue)"reversing the equation"#
#"divide both sides by 9"#
#(cancel(9) x)/cancel(9)=(-45)/9#
#rArrx=-5#
#color(blue)"As a check"# Substitute this value into the equation and if both sides are equal then it is the solution.
#"left "=-8-2/5xx-5=-8+2=-6#
#"right "=1/2(-5-7)=1/2xx-12=-6#
#rArrx=-5" is the solution"#