"We can work as follows:"
\quad \ 8 lnx \ = \ 1. \quad \ color{blue}{ "now isolate the log term" \ rarr }
\quad \ lnx \ = \ 1/8 \qquad \ \ color{blue}{ "now maybe emphasize the base of the log" \ rarr }
\quad \ log_{e} x \ = \ 1/8 \quad \ \color{blue}{ "now rewrite this as an exponential equation, " }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \color{blue}{ "using Fundamental Property of Logarithms:" }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \color{blue}{ log_{b} x = color{red}{p} \quad hArr \quad b^color{red}{p} = x. \qquad rarr }
\quad \ e^{1/8} \ = \ x \qquad \ \color{blue}{ "this is our solution !!" }
\quad \ x \ = \ e^{1/8} \qquad \ \color{blue}{ "write it the other way around; we are done." }
\quad \ x \ = \ root[8]{e} \qquad \color{blue}{ "or write it without negative or fractional" }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \color{blue}{ "exponents, if you like." }
"So, we have our solution:"
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad x \ = \ e^{1/8} \ = \ root[8]{e}.