How do you solve #8x + 7y = 25# and #x = 25 - 4y # using substitution?
1 Answer
Mar 5, 2018
Explanation:
#8x+7y=25to(1)#
#x=25-4yto(2)#
#"substitute "x=25-4y" into equation "(1)#
#8(25-4y)+7y=25#
#rArr200-32y+7y=25#
#rArr200-25y=25#
#"subtract 200 from both sides"#
#cancel(200)cancel(-200)-25y=25-200#
#rArr-25y=-175#
#"divide both sides by "-25#
#(cancel(-25) y)/cancel(-25)=(-175)/(-25)#
#rArry=7#
#"substitute " y=7" into equation "(2)#
#x=25-(4xx7)=25-28=-3#
#rArr"point of intersection "=(-3,7)#