Step 1) Because the second equation is already solved for #x# we can substitute #35 - 8y# for #x# in the first equation and solve for #y#:
#8x + 7y = -5# becomes:
#8(35 - 8y) + 7y = -5#
#(8 xx 35) - (8 xx 8y) + 7y = -5#
#280 - 64y + 7y = -5#
#280 - 57y = -5#
#-color(red)(280) + 280 - 57y = -color(red)(280) - 5#
#0 - 57y = -285#
#-57y = -285#
#(-57y)/color(red)(-57) = (-285)//color(red)(-57)#
#(color(red)(cancel(color(black)(-57)))y)/cancel(color(red)(-57)) = 5#
#y = 5#
Step 2) Now, substitute #5# for #y# in the second equation and calculate #x#:
#x = 35 - 8y# becomes:
#x = 35 - (8 xx 5)#
#x = 35 - 40#
#x = -5#
The solution is: #x = -5# and #y = 5# or #(-5, 5)#