Given:#" "9(n+3)=7n-3#
#color(purple)("Using first principles rather than the shortcuts")#
Multiply everything inside the bracket by the 9 that is outside the brackets, giving:
#(9xxn)+(9xx3)=7n-3#
#9n+27" "=" "7n-3#
Subtract #color(blue)(7n)# from both sides
#color(brown)(9ncolor(blue)(-7n)+27" "=" "7ncolor(blue)(-7n)-3)#
#2n+27=0-3#
Subtract #color(blue)(27)# from both sides
#color(brown)(2n+27color(blue)(-27)=-3color(blue)(-27))#
#2n+0=-30#
Divide both sides by #color(blue)(2)#
#color(brown)(2/(color(blue)(2))xxn=-30/(color(blue)(2))#
But #2/2=1# giving:
#n=-15#