How do you solve #9^x=3^(x+4)#?

1 Answer
Apr 16, 2018

#x=4#

Explanation:

Given: #9^x=3^(x+4)#

Notice that #9=3^2#. So, we get:

#=>(3^2)^x=3^(x+4)#

Using the fact that #(a^b)^n=a^(bn)#, we get:

#=>3^(2x)=3^(x+4)#

The bases are equal, so we can say that:

#2x=x+4#

#2x-x=4#

#x=4#