How do you solve #9p ^ { 2} - 24p + 11= 0#?
2 Answers
Use the quadratic formula to get
Explanation:
Use the quadratic formula
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We will use this with
Given:
#9p^2-24p+11 = 0#
Notice that
So consider:
#(3p-4)^2 = (3p)^2-2(3p)(4)+4^2#
#color(white)((3p-4)^2) = 9p^2-24p+16#
So:
#0 = 9p^2-24p+11#
#color(white)(0) = 9p^2-24p+16-5#
#color(white)(0) = (3p-4)^2-(sqrt(5))^2#
#color(white)(0) = ((3p-4)-sqrt(5))((3p-4)+sqrt(5))#
#color(white)(0) = (3p-4-sqrt(5))(3p-4+sqrt(5))#
Hence:
#3p = 4+-sqrt(5)#
So:
#p = 4/3+-sqrt(5)/3#